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Gas 

The incorporation of three-body collisions for dissociation/recombination into 
the Boltzmann equation is discussed. Conditions are assumed such that colli- 
sions are completed in the sense of scattering theory, so the collision operator 
is determined by scattering and reaction cross sections. The resulting equation 
has an H-theorem, and the equilibrium solution requires the law of mass action 
in addition to the Maxwellian dependence on momentum. A brief discussion is 
given of the normal solution and the transport coefficients. 

KEY WORDS: Boltzmann equation; three-body collisions; reactions; dis- 
sociation; recombination. 

1. I N T R O D U C T I O N  

The subject is the generalization of the Boltzmann equation to account for 
breakup and recombination in a gas of particles which form two-body 
bound states. The primary focus will be on the dissociation/recombination 
of diatomic molecules, but the method is applicable to other processes such 
as ionization. 

The gas is treated as a reacting mixture, and the Boltzmann equation 
is a set of coupled equations, one for each component of the mixture. To 
avoid the introduction of a density matrix for internal motion, I assume the 
compound particles to have only a single internal state; each of the species 
is then described by a distribution function on the space of position and 
momentum. The three-body collision operator for reactive collisions is 
derived from the collision-rate formula of scattering theory. The resulting 
kinetic equations have an H-theorem, which in equilibrium yields the law 
of mass action in addition to the Maxwellian dependence on momentum. 
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Application of the Chapman-Enskog procedure to construct a normal 
solution and to obtain formulas for the transport coefficients follows 
generally the same lines as for a nonreacting mixture. 

The standard approach to the generalization of the Boltzmann equa- 
tion is based on the BBGKY hierarchy and Bogoliubov's functional 
assumption (see, e.g., ref. 1). This approach, with a modification of the 
functional assumption, has been used to discuss the kinetic equations for a 
dissociating gas. (2) The collision operators obtained in this general way 
include effects due to the spatial extent of a collision, and effects like those 
in the Waldmann-Snider equation (3~ due to collision-induced coherence 
among elements of the density matrix for internal states. The result is 
rather complicated, primarily because the collision operator is not deter- 
mined by cross sections for completed collisions. In the simpler description 
of reactions presented here, the spatial extent of a collision is neglected (as 
it is in the Boltzmann binary collision operator), and the Waldmann- 
Snider coherence effects do not occur since there is only a single internal 
state. (Actually, the requirement of a single internal state is not essential to 
the argument, provided that off-diagonal elements of the internal density 
matrix are assumed to vanish, as in the theory of Wang Chang et  aL (4)) 

The collision operators obtained in the following may be compared 
with the Bogoliubov triple-collision operator. (1) In three-particle collisions 
there can occur disconnected collision sequences, for which one of the par- 
ticles passes through without interaction. Such sequences must be omitted 
from the triple-collision operator, since they have already been counted in 
the binary-collision operator. The Bogoliubov triple-collision operator 
therefore depends on configurations during the course of the collision, (5) as 
the presence of a disconnected sequence cannot be detected from the initial 
and final momenta alone. In the cases considered here, there are three free 
particles in either the initial or final state, but not both, so disconnected 
sequences cannot occur. The net effect of this, and the simplifications men- 
tioned in the preceding paragraph, is that the collision operator is deter- 
mined by scattering and reaction cross sections. There is a slight complica- 
tion because of the bookkeeping necessary to keep track of three particles, 
but otherwise the reactive collision operator has many similarities to 
Boltzmann's binary-collision operator. 

The Bogoliubov triple-collision operator yields density-dependent 
corrections to the transport coefficients, similar to those obtained from the 
Enskog equation. The processes considered here are also responsible for 
density-dependent corrections, but the dependence on density is quite 
different because of the strong temperature dependence contained in the 
law of mass action. For, say, hydrogen at standard conditions, it is a 
good approximation to neglect Enskog-like corrections, but a very poor 
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approximation indeed to use the low-density, or atomic, limit of the law of 
mass action. 

The Boltzmann equation has been used extensively to treat 
bimolecular reactions in a gas (see refs. 6, and references cited therein). 
However discussions of three-body reactions have in the past been 
generally based on phenomenological rate equations, or on the introduc- 
tion of "source" and "sink" terms in a Boltzmann equation. 

2. T H E R M O D Y N A M I C S  

I first summarize the equilibrium thermodynamic properties of the 
system under consideration. Consider a gas of identical particles which can 
form a two-body bound state (or diatomic molecule). Suppose the gas to 
be in equilibrium, including chemical equilibrium under dissociation and 
recombination. Since my main concern is the handling of three-body 
collisions, ! neglect excited molecular states and formation of ions. 

Let NA denote the number of atoms (unbound particles), andl NM the 
number of molecules (bound pairs), at a given temperature and total 
density. The total number of particles is 

N r  = NA + 2NM (1) 

The densities of atoms and molecules are 

nA = NA/V ,  nM = N M / V  

where V is the volume; also define 

F / = n  A -~- F/M ~ n r = n A  +2nM 

and the mass density is p = mnT, where m is the mass of an atom. 
An equilibrium state is fixed by the values of the mass density p and 

Kelvin temperature T. (If the gas is in uniform motion, its velocity u is an 
additional thermodynamic variable.) The individual densities nA and n~t 
vary with p and T in accordance with the law of mass action, 

nM = Kn 2 (2) 

The equilibrium constant K is given by 

K -  (~m~:T)3/2 exp ~-~ 

where h is Planck's constant, ~c is Boltzmann's constant, and B > 0 is the 
binding energy of the two-body bound state. 
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/ ' /M 

Let x denote the atomic mass fraction, x = N A / N T ;  then nA =xnT,  
= l n r ( 1 - x ) .  Equations (1) and (2) yield the quadratic equation 

with solution 

2Knrx  2 + x - 1 = 0 

1 
X = 777"-'-~ E( 1 "]- 8 t ' I T K )  1/2 - -  1 3  

This yields the useful relations 

/,IT - -  - -  , + ~ ' - ~  
ant  7- 2 - x  kaTJ.~  -2----x (3) 

The internal energy (per unit volume) and equation of state are 

~ = ~ q ~ c T - n M B ,  p=n~cT (4) 

Using Eq. (3), we find for the isothermal compressibility 

K r  = (1/nr)(~nr/Op)r = (l /p)[1 + (nAnM/n2)] 

Let Cv and Cp denote the specific heats (per unit mass) at constant volume 
and pressure, respectively. For the former we get 

= = 2 + n A n M  (~+~ o ~nx l + 3 n  r 

The specific heat at constant pressure can be obtained from 

Op 2 

Equation (3) yields 

111 
from which follows 

pc~--gn~ 1+5 _--~- g+~  
n T 

The specific heat has a strong peak as a function of temperature, the peak 
being more pronounced at low density and occurring at about the point 
where x = 1/2. 



Boltzmann Equation for a Dissociating Gas 891 

3. B O L T Z M A N N  E Q U A T I O N  

I now suppose the gas not to be in equilibrium, and construct a 
generalized Boltzmann equation to describe its behavior. I treat the atoms 
as identical particles, satisfying quantum statistics, but ignore any internal 
degrees of freedom such as spin; the density is assumed to be low enough 
that the gas is nondegenerate. Let f~, s = A, M, denote the distribution 
functions for atoms and molecules, respectively; position and time will be 
written x, t, while p denotes momentum. With the normalization 

Ns = f d3x d3p f~(x, p, t) (5) 

the local densities of atoms and molecules are given by 

ns(x, t ) = f  d~p L(x, p, t) (6) 

The Boltzmann equations for fs are 

~L 
~-~- + v. VL = J, (7) 

wher} v = p/ms and m A = m, m M = 2m. The collision operator Js will be 
written as 

Js=JSs+JXs (8) 

corresponding, respectively, to elastic scattering and to reactive collisions. 
The former have the standard form; for example, the collision operator for 
scattering of atoms by atoms is 

1 
JAA(Pl )=~f  d3P2 q f dD(q') aAA(q' ~ q )  

/~2 

• [/A(P'I) fA(P~)--fA(Px) fA(P2)] (9) 

Here P'I, P2 are initial momenta such that the momenta after the collision 
are pm, P2, and q denotes the relative momentum of two atoms, 

q= �89 --P2) (10) 

In addition, dg2(q') is the element of solid angle about q', ,/2 2 = m/2 is the 
reduced mass, and aAA is the cross section for scattering of two atoms. The 
factor 1/2 occurs to eliminate double counting of states for the two identi- 
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cal particles. An equivalent form, which explicitly shows conservation of 
energy and momentum, is (7) 

= �89 2 f d3p2 d3p'l d~p~ Ja~(Pl)  

• 3 ( K - K ' )  6(E-E')ITAA(qlq')[ 2 

• [fA(P~) fA(P~) - fA(PA) fa(P2)] (11) 

Here TA~ is the T-matrix (with exchange term included) for the scattering 
of two atoms, related to the cross section by aA.~ = I TAA/(2n#2h)I 2, and the 
total momentum and energy have been denoted by K and E. The 
T-matrices occurring here and below are reduced by removal of the delta 
function for overall conservation of momentum; the scattering is described 
in the center-of-mass frame, so they depend on only the relative momenta. 

4, REACTIVE COLLISION OPERATORS 

The reactions considered are three-body collisions leading to the for- 
mation of a molecule and dissociation of a molecule induced by collision 
with an atom; for distinguishable particles (which are not considered here) 
rearrangement collisions must also be included. The reactive contribution 
to the collision operator can be obtained by counting the gain and loss 
rates, in a way similar to that frequently used to derive the Boltzmann 
equation for a monatomic gas. For this purpose we use the collision-rate 
formula of scattering theory. 

Consider a general collision, in which m beams of particles of various 
kinds are incident on a scattering region, and n counters are set to observe 
emitted particles. Let f j(x,  p, t) d3p be the number of incident particles of 
the j t h  kind, per unit volume, with momentum in the range d3p. Let dN 
denote the rate of collisions, per unit volume, leading to emitted particles 
with momenta in the ranges d3p'l ..... d3p',,. Then d ~  is given by (8) 

d ~  = (2~) 2 h 3m 4 f j(pj)  d d 
1 

• ~ ( K - K ' ) ~ ( E - E ' ) I r ( f l i ) L  ~ (12) 

where T( f  I i) is the T-matrix for the transition between initial and final 
states. 
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Consider, for example, a dissociative collision in which a tom number 
3 collides with a bound pair of particles 1, 2. The collision rate for this 
process is 

d~D = (2~zh) 2 fA(P3) d3p3fM(P12) d3p~2 

• d3p'~ d3p'2 d3p'3 6(K - K')  

• 6 ( E -  E') [ rD(k~, q12 [k3)[ 2 (13) 

where TD denotes the T-matrix for dissociation. As before, q denotes the 
relative momentum of a pair, but subscripts have been attached to show 
the particles involved, 

q12 = �89 - P 2 )  

In addition, I use P and k to denote, respectively, the total momentum of 
a pair and the relative momentum of a third particle with respect to the 
pair: 

P12 Pl + P2, k3 = 2 = 303 -- �89 

The total momentum of the three-particle system is 

K=pl+P2 +P3 

and the kinetic energy can be written in the forms 

1 2 1 2 1 2 1 
2--m (p2 + p2 + P3) = ~mm P3 + ~mm e~2 + ut2 = ~mm K2 + w3 + uf2 

Here w, u are kinetic energies of relative motion, 

w = k2/2#3, u = q2/2/* 2 

where/ '3  = 2m/3 is the reduced mass of the atom-molecule  system. 
The a-functions in Eq. (13) impose four restrictions on the nine com- 

ponents of the final momenta,  so five scattering parameters are needed to 
specify the collision. Let us take these to be the directions of k~, q'~2 plus 
the energy w;. The volume element for the final momenta  can be written 

d3p'l d3p'2 d3p'3 = d3K , d3k~ d3q'12 
3 t t t t t t 

= d K/ '3k3  dw3 df2(k;)/'2q12 du12 dO(q~2) 

and when conservation of momentum is taken into account, the energy 
difference becomes 

E - E ' =  w3 - B -  w~ - u ] 2  
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The product of incident flux times target density is 

(k3/#3) fa(P3) d3p3 fM(e~2) d3p12 

To identify the cross section, divide the collision rate (13) by this product 
and integrate over K', #12. This yields 

da 
~o(k3 ~ k;, qi2)= 

dQ(k;) dQ(q'12) dw'3 

= (2nh) 2 #2/~3 2 Tn(k;, qi2 Ik3)l 2 

The final momenta are no longer independent variables, but are deter- 
mined as functions of the initial momenta and the scattering parameters. 

Recombination corresponds to a collision in which three atomic 
beams are incident and both atoms and diatomic molecules are emitted. If 
the emitted molecule is a bound pair of particles 1, 2, the collision rate is 

d~R = (2n) 2 hSfa(pl) d3pl fa(P2) d3p2fA(P3) d3p3 
x d3p'3 d3p'~2 6(K - K') 3 ( E -  E') I Ts(k; I k3, q12)l 2 

where TR is the T-matrix for recombination. With three incident particles 
there are several options for the definitions of cross section; let us choose 
the product of incident flux times target density to be 

(k3/#3)(q12/It2) fA(Pl ) d3pl/A(P2) d3p2fA(P3) d3p3 (14) 

The volume element for the final momenta can be written 

d3p'3 d3p'~2 = d3K ' d3k'3 = d3K ' #3k'3 dw'3 dO(k~) 

Integrating the collision rate over K', w; and dividing by the product (14), 
we obtain for the cross section 

do 
aR(k3, q12 -~ k~) = dC2(k3 ) '  

k; 
= (27Q 2 hS#2#] ~ ]TR(k; [ k3, qt2)[ 2 

It follows from microscopic reversibility and invariance to spatial inver- 
sions that 

- -  t ! TD(k3, ql2 ]k3) = TR(k3 ]k3, q'12) (15) 
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where the bar denotes the complex conjugate. Consequently, the cross 
sections satisfy the reciprocity relation 

(k3 q12) 2 oR(k3, q12 --" k;) = h3k'32aD(k'3 -~ k 3, qJ2) (16) 

The reactive collision operators have the Boltzmann gain-loss form 
with the gain and loss terms being obtained from the appropriate collision 
rates. Consider first the reactive collision operator J ~  in the kinetic equa- 
tion for molecules. Suppose a bound pair of particles with momentum P12 
collides dissociatively With an atom with momentum P3. To derive the 
collision operator, it is necessary to calculate the net rates of loss and gain 
to molecules with momentum in the range d3p12 . The rate of loss due to 
dissociation is obtained by integrating (13) over P3 and the three primed 
momenta. Let each of the latter range over the full space for momentum, 
but divide by 3! to eliminate multiple counting of states for identical 
particles. The result is 

rate of loss = ~ {(2rch)2 f d3p3fA(P3)fM(P12) 

• f d3p'~ d3p'2 d3p'3 3(K -- K') 

x 6(E-  E') 1TD(k;, q'12 I k3)[ 2} d3p12 

The inverse collision corresponds to recombination, and contributes to the 
gain rate for molecules. To calculate the gain rate to molecules in d3p12, 
denoting the initial momenta by a prime, we find 

rate of gain = ~  (2~) 2 h s f d3p'~ d3p'2 d3p; 

x fA(Pl) fA(Pl) fA(P;) f d3p3 3(K - K') 

x 6(E-  E') I TR(k3 I k;, q'12)l 2} d~Pz2 

Taking the difference and using Eq. (15), we obtain the collision operator 
for molecular dissociation/recombination, 

1 
JX(P12 ) = ~ (2nh) 2 f d3p3 d3p'l d3p2 d3p'3 

x 6(K - K,) 6 ( E -  E') [ TD(k;, q'12 I k3)l 2 

• [h3fA(P'm) fA(P~) f,4(P~) --fA(P3) fM(P12)] (17) 
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In terms of the cross section, this takes the form 

1 k 3 
f d3p, 73 f dw; 

x df2(qi2 ) o'~9(k 3 ~ k;,  qi2) 

X [h3fA(Prl) fA(P2) fA(P3) --fA(P3) fM(P,2)~ 

The integration over P3 is limited by the threshold condition w3 = 
k~/2~3 >/B. Of course, the collision operator can be expressed in terms of 
aR rather than o'D; in some cases, as here, the form is slightly simpler if the 
cross section corresponds to the processes which contribute to the loss 
term. 

The collision operator in the kinetic equation for atoms is derived in 
a similar way, but there are contributions to the loss and gain rates from 
both recombination and dissociation. The loss rate to atoms with momen- 
tum in the range d3pl due to recombination is 

rate ofloss = ~ [(27z) 2 hSf d3p2d3p3fA(Pl)fA(P2)fA(P3) 

f d3p'l d3p'23 ITR(k'~ [ kl,  q23)12 X 

x 6 ( K -  K') ~(E-E')] d3pl 

where the factor 1/2 accounts for permutations of P2, P3. Denoting the 
initial momenta for the inverse (dissociative) collisions by a prime, we find 
for the rate of gain 

rate of gain = ~  (2~h) 2 f d3p'~ d3pi~fA(pl)fM(Pi3) 

x f d3p2 d3p3 6(K - K ' )  

x 6(E-E')I To(k,, q23 [ kl)[2] d3pl 

The associated collision operator is 

f d3p2 d3p3 d3p'l d3p~23 J~(Pl) �89 2 

x 6(K - K') 6(E- E') I TR(kl I k 1, q23)12 

x [fA(P~) fM(P i3 ) -  h3fA(Pl) fa(P2) fA(P3)] 
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The rate of loss from d3pl due to dissosciative collisions is 

rate of loss 

=3~ (2nh)2 d3P23fA(P~)fM(P23) 

x f d3p'l d~p'~ d %  6(X- K') 

x 3(E-E')I Tzffk'~, q~3l kx)] 2] d3pl 

and the gain rate due to the inverse collisions is 

rate of gain 

=3~ (2n)2h5 d3p'l d3p2d3p'3fA(P'I) fA(P'2) fA(P'3) 

X f d3p23 6(K - K') 6(E- E')I TR(kl I k'l, q~3)[ 2] d3pl 

This gives the collision operator for dissociation 

jD(pl) = ~ (27~h)2 f d3p23d3pll d3pr2 d3pr3 

x 6(K - K ' )  6(E- E') I TD(k'x, q~3 I k~)l 2 

x [h3fA(p'~) fA(P~) fA(P~)--fA(P~) fM(P23)] (18) 

The total reactive collision operator is j x  = jAR + j ~ .  In terms of cross 
sections it is 

1 klq23 
f df2(k'l) oR(k~, q23 ~ k'~) J~(p,) =~f d~p~ d% 

x Fh ~fAP'I) fM(PI~)--fA(P~) fA(P2)/A(P3)] 

+~ I d3p23 dw'~ dO(k'~) df2(q~3) k~ o~,(k~ -,, k'~, q~3) 
�9 /2 3 

• [h3fA(Pl) fA(P~) fA(P~)--fA(P~) fM(P23)] 

There are other situations of interest which can be described by 
straightforward modifications of the collision operator. For example, sup- 
pose the reacting species to be present at low concentration in an inert 
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buffer gas, with reactions being mediated only by the buffer atoms. In this 
case, the collision operator in the kinetic equation for molecules is 

1 
J~(e12)  =2 f d3pB(kB/#B) f dW'B df2(k~) 

x df2(q'12 ) O-D(k B --, k~, qi2) 

• [h3fa(P',) fA(P[) fB(P~) -- fB(P.) fM(P,e)]  

while for atoms 

jX(p,)  = f d3p2 d3p.(k.q~2/#2#.) 

x J d/2(k~) O'R(kB, q12 --* k~) 

• f M ( P h )  - fA(P,)  YAP2)/ (PB)] 

Here the subscript B labels buffer atoms, and PB and kB are the reduced 
mass and relative momentum for a buffer atom with respect to a bound 
pair, 

1 1 1 kB PB P12 
-t 

I~B ms 2mA' 1~8 ms 2mA 

5. GENERAL PROPERTIES OF B O L T Z M A N N  E Q U A T I O N  

The conservation laws, H-theorem, and equilibrium solution are 
obtained from the Boltzmann equation in much the same way as for a 
monatomic gas. 

The conservation laws follow from the existence of summational 
invariants ~ = {0A, ~M} with the property that 

f d3Pq'sL = 0 
s 

The summational invariant corresponding to conservation of mass is given 
by ~s = rn,, that for momentum is ~b s = p, and for the energy it is ~ = 
(p2/2ms)-Bs, where B A --0, BM =B.  It is readily checked that these 
satisfy the preceding equation, and the corresponding local conservation 
laws follow immediately. The only novel features concern the energy con- 
servation law and the equations for the densities of the two species. The 
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energy density and flux, s~itisfying &/Ot + V . s  = O, now contain contribu- 
tions from the internal energy 

f (p2 ) f (p2 ) 1 pfs(p) (19) e= E d3P -f-~m - Bs fs(P), s = E  d3P ~mTm~ - Bs m--7 
s s 

The numbers of atoms and molecules are not independently conserved, but 
integration of (7) yields 

dns 
& + V. Js = v, (20) 

where n, is determined byf~ according to Eq. (6) and the fluxes j, are given 
by 

1 Pf~ (21) J~=f d3Pm--~s 
The source terms are 

Vs = f d'pJ, 

Nonvanishing contributions to vs are obtained only from the collision 
operators for dissociation/recombination. For v = v M we have 

v = f d3pj x (22) 

It follows from conservation of momentum that ~ ,  msVs = 0, so v A = -2v .  
The/-/- theorem depends on the property of a collision operator that 

f d3pln fJ<~ O (23) 

The argument for the scattering collision operators is standard, so we need 
consider only reactive collisions. For  the purpose at hand, the forms (17) 
and (18) for the collision operators are more convenient than those 
containing the cross sections. A relabeling of particles and interchange of 
primed and unprimed variables leads to 

f d3P ln(h3fA)J~ + f d3p ln(h3fM)J~M 

1 
= 3-5 f d3pl d3p2d3p3 f d3p'l d3p'23 

• a ( K -  K') 6 ( E - E ' ) I T o ( k , ,  q23 J k'l)l 2 

• f M ( e h )  - h%, (m)  f (P2) f (P3)] 

• ln[h3fA(P, ) fa(P2) fA(P3)/fa(P'l) fM(P23)] (24) 
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which is nonpositive. Note that JA, Jm do not individually satisfy (23), but 
only the combinations shown above. 

Consider a spatially-homogeneous system and define the H-function 
by 

H :  f d3p ln(h3f~) fA + f d3p ln(h3f~)fM 

Then 

dH 
= f d3p[1 + ln(h3fA)]JA + f d3p[1 + ln(h3fM)]JM d----[ 

By what has just been shown, 

dH.< ~ f d3pj M --~ -.~ J d3pJ A + = m .  9 

Consequently, the quantity H ' =  H +  nn +nM satisfies 

dH'/dt ~ 0 

That H '  is bounded from below follows from that property of H, so H'  
approaches a limit for t ~ oe. In the limit dH'/dt = 0 and since it is a sum 
of nonpositive terms, each of these must vanish separately. The usual 
argument applied to the terms for scattering shows fs to have the 
Maxwellian form, 

fs(P) = ns~bs(p - msu) 

Here u is the flow velocity and 

~bs(p) = (2nms~cT) -3/2 exp(-pZ/2ms~cT) 

(25) 

For dissociation/recombination, conservation of energy and momentum in 
Eq. (24) are expressed by 

1 
P'I + P23 = Pl + P2 + P3 

which in the case of Maxwellian distribution functions yields 

h3fa(Pl ) fA(P2) fA(P3) -- fA(P'~) fm(P~3) 

= [(Kn]/nM)--1] fA(P'I)fM(P~3) (26) 
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Vanishing of the integral then requires the law of mass action to be 
satisfied, and the equilibrium solution to the Boltzmann equation is 
thereby determined. 

The conserved densities obtained from the equilibrium distribution 
functions are 

1 2 3 n ~ T _ n g  B (27) p = m ( n A  +2nM), g=pu ,  e=~pu  + 

For a gas at rest, the energy is the same as given in Eq.(4). The 
equilibrium values of the pressure tensor t~ = ~ S  d3p(P~Pj/ms)f~ and 
energy flux are 

tij=ntcT~Sij + puiuj, s=(�89 + h )u  (28) 

where h = S n t c T - n g B  is the enthalpy per unit volume. The first of these 
identifies the pressure as p = nKT. Thus, the thermodynamic relations of 
Section 2, including the law of mass action, follow from the equilibrium 
solution to the Boltzmann equation. 

6. N O R M A L  S O L U T I O N  

Reactions are known to have a significant effect on the transport 
coefficients, particularly the thermal conductivity, of gases. In a dissociating 
gas the thermal conductivity exhibits a strong peak as a function of 
temperature, which is correlated with the peak in specific heat and reaches 
a maximum when the degree of dissociation passes through the region of 
rapid change. The magnitude of the increase depends on density, but 
increases greater than an order of magnitude are not unusual. An explana- 
tion by Hirschfelder (1~ is based on a modification of the equations for a 
nonreacting mixture to account for the internal energy of the molecules and 
for the effects of diffusion. The transport coefficients have been evaluated 
on the basis of Hirschfelder's theory for several dissociating gases. (11) 

The transport coefficients can be obtained by applying the Chapman- 
Enskog procedure (9) to the equations obtained in the foregoing. The results 
are equivalent to Hirschfelder's except that the contribution of the reactive 
collision operators is included. I sketch the application of the Chapman- 
Enskog expansion. 

Let the distribution functions be written in the form 

f~ =f~L[-1 + 45s] (29) 

where fsL is the local-equilibrium distribution function and ~b s is deter- 
mined so that fs  satisfies the Boltzmann equation. The distribution 
functions for local equilibrium have the form (25), 

LL(P) = nsLqks(P -- m~ u) (30) 
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but nsL , T, and u are functions of position and time. These are determined, 
as functionals of the actual distribution functions f~, by the requirement 
that they depend on the conserved densities p, g, and e in the same way as 
in (strict) equilibrium. In view of the form of f~.L, this is equivalent to 
saying that the conserved densities have the same values whether calculated 
from f ,  or fsL, which in turn is equivalent to 

(~,, ~ ) = 0  (31) 

where ~ is any summational invariant and the scalar product is defined by 

n(T, ~b)=~  nsL f d3p(~s~sq~s (32) 
s 

The densities nsc associated with local equilibrium are definite func- 
tions of p and T, determined from the law of mass action as in Section 2, 
and are not necessarily the same as the n, obtained from the exact distribu- 
tion functions by Eq. (6). The latter have contributions from q~ which need 
not be related by mass action, but such contributions do not occur in the 
order treated here. The source terms v, vanish when calculated at local 
equilibrium, but in higher order than we consider they have q~-dependent 
contributions. Since to the order under consideration nsL is the same as ns, 
I henceforth drop the subscript L. 

The local-equilibrium contributions to the energy and momentum 
fluxes have the same form as given in Eq. (28); the fluxes obtained from the 
actual distribution functions have additional, irreversible, contributions 
which will be labeled by a star: 

t~ = P6o+PUiUj+t*, si=(h+�89 tou j *  +s* (33) 

The irreversible fluxes are given in terms of ~ by 

1 
t * = 2  f d3Pm--~PiPJfsL~b, 

" (34 )  

\2ms( 1--~P2- ) m---~l pfsLq~" s*=E f d3P 
s 

In the first Chapman-Enskog approximation, q~ is neglected on the 
left-hand side of the Boltzmann equation, and the time derivatives are 
calculated with the Euler equations (that is, the conservation taws with the 
fluxes replaced by their local-equilibrium values). One finds after some 
calculation 

( 3  ) 1 1 
~ + v ' V  lnf~L - t~T2 S~ . V T + - ~  T~uD o (35) 
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where D• is the abbreviation 

Do.=~(~?u_~ Ouj,  

and I have introduced the "subtracted" fluxes: 

Ss=  p Z - B  s - - - p ,  T, ij = -  p i p i - ~ 6 o . p  2 
m s m s 

Equation (35) is written for u = 0; the general case can be recovered by the 
replacement p ~ p - msu. 

On the right-hand side of the Boltzmann equation, terms higher than 
first order in 05 are neglected in the first Chapman-Enskog approximation, 
so a linear operator on 45 is obtained. Let the linearized collision operator 
I be defined by 

�9 Is = --nfsLI~ 45 (36) 

The contribution to I of elastic scattering has a standard form, ~ while that 
from dissociation/recombination is conveniently expressed as the scalar 
product 

1 
f d3p l  d3p23 r ) CM(P23) 

kl 
n2( I//, 1x45) = ~.. n Anm 

la3 

X f dw] dQ(ki) d~(qi3) 

• O'D(k 1 -+ k;,  q~3)[elx [45]x 

where the bracket symbol is defined by 

[~e]x = ~A(m) + ~M(P23) - ~UA(p',)- ~UA(p;)- ~A(P;) 

This shows I x to be symmetric and nonnegative: 

(gt, IX45)=(IX~p,  45), (45, IX45)>10 

[The notation used here is related to that of Chapman and Cowling (9) by 
(gt, i x45 )=  (n~nM/n2){~ ,  45}.] Then Eqs. (35) and (36) yield the integral 
equation for 45 

145- l S 1 ntcT ~ . V T - ~ x T  T~Du (37) 

822/57/3-4-31 
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Solvability of Eq. (37) requires the right-hand side to be orthogonal to 
any summational invariant, and it is straightforward to confirm that 
(O, S) = (O, T) = 0. The solution for q~ can be expressed in the form 

1 1 
q5 = - -  tincT---- 5 5 : .  V T -  rl~c T 3-~o.D o, (38) 

where Y and Y satisfy 

15~ = S, 15- = T (39) 

In view of (31), the solutions to these equations should satisfy 
(O, 5:) = (0, 5-) = 0. 

By use of the conditions (31), the irreversible contribution to the 
pressure tensor can be written t* = n(To .  , ~ ) .  This shows that ti* = 0, so the 
gas has no bulk viscosity. Substituting the expression (38) for ~, we get 

, _  _2rl(Do.  l "u) t~ - - ~ 6 o. V 

where the viscosity t/is given by 

1 

Except for the reactive contributions to I, the viscosity is the same as for 
a nonreacting mixture. 

The heat flux can be put in the form s* = n(S, 45), which then reduces 
to Fourier's law, s * =  - 2  VT, where the thermal conductivity is given by 

1 

. S h i -  

In the case of a nonreacting mixture, the right-hand side of Eq. (37) 
contains terms depending on the concentration gradients. These give rise to 
diffusion, and to a term in s* which depends on the velocity of diffusion. 
Reactions cause the concentration gradients to be fixed by the temperature 
gradient, so diffusion does not occur as an independent process. 
Nevertheless there is a contribution to the thermal conductivity, as 
calculated by Hirschfelder, which is due to energy transport associated with 
the relative velocity of the two species. Thus, the result just obtained for 
thermal conductivity differs from Hirschfelder's only by the reactive con- 
tribution t o / .  Generally, reactive collision rates are small in comparison to 
those for scattering, so the neglect of I K should in most cases be a good 
approximation. 
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